FavorPrep™ Tissue Genomic DNA Extraction Mini Kit
-- For extraction of genomic DNA from animal cells, animal tissues, blood, bacteria, paraffin fixed tissue, yeast and fungi

Kit Contents:

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>FATG 000-Mini</th>
<th>FATG 001</th>
<th>FATG 001-1</th>
<th>FATG 001-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATG 1 Buffer</td>
<td>1.5 ml</td>
<td>15 ml</td>
<td>30 ml</td>
<td>70 ml</td>
</tr>
<tr>
<td>FATG 2 Buffer</td>
<td>1.5 ml</td>
<td>15 ml</td>
<td>30 ml</td>
<td>70 ml</td>
</tr>
<tr>
<td>Proteinase K* (lyophilized)</td>
<td>1 mg</td>
<td>11 mg</td>
<td>11 mg x 2</td>
<td>11 mg x 6</td>
</tr>
<tr>
<td>W1 Buffer* (centrifrate)</td>
<td>1.3 ml</td>
<td>22 ml</td>
<td>44 ml</td>
<td>124 ml</td>
</tr>
<tr>
<td>Wash Buffer* (centrifrate)</td>
<td>1 ml</td>
<td>10 ml</td>
<td>20 ml</td>
<td>55 ml</td>
</tr>
<tr>
<td>Elution Buffer</td>
<td>1 ml</td>
<td>15 ml</td>
<td>30 ml</td>
<td>90 ml</td>
</tr>
<tr>
<td>FATG Mini Column</td>
<td>4 pcs</td>
<td>50 pcs</td>
<td>100 pcs</td>
<td>300 pcs</td>
</tr>
<tr>
<td>Collection Tube</td>
<td>8 pcs</td>
<td>100 pcs</td>
<td>200 pcs</td>
<td>600 pcs</td>
</tr>
<tr>
<td>Elution Tube</td>
<td>4 pcs</td>
<td>50 pcs</td>
<td>100 pcs</td>
<td>300 pcs</td>
</tr>
<tr>
<td>Micropestle</td>
<td>4 pcs</td>
<td>50 pcs</td>
<td>100 pcs</td>
<td>300 pcs</td>
</tr>
<tr>
<td>User Manual</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Preparation of Proteinase K solution (10 mg/ml) by adding ddH2O
- ddH2O volume for Proteinase K: 0.1 ml
- ddH2O volume for W1 Buffer: 0.5 ml
- ddH2O volume for Wash Buffer: 4 ml

Preparation of W1 Buffer and Wash Buffer by adding ethanol (96 ~ 100%)
- Ethanol volume for W1 Buffer: 0.5 ml
- Ethanol volume for Wash Buffer: 4 ml

Brief procedure:

1. Cut up to 25 mg tissue sample to a microcentrifuge tube (not provided). Use provided Micropestle to grind the tissue sample. Or you can grind the tissue sample in liquid nitrogen with mortar and pestle then transfer the powder to a microcentrifuge tube.
2. Add 1.1 ml sterile ddH2O to the tissue sample. Vortex and make sure that Proteinase K has been completely dissolved. Store the stock solution at 4°C.
3. Add 1.1 ml sterile ddH2O to Proteinase K tube to make a 10 mg/ml stock solution. Vortex and make sure that Proteinase K has been completely dissolved. Store the stock solution at 4°C.
4. Add dry baths or water baths before the operation: one to 60 °C for step 4 and the other to 70 °C for step 7.
5. Preheat the Elution Buffer to 70 °C for step 13.
6. All centrifuge steps are done at full speed (> 18,000 x g) in a microcentrifuge.

Protocol: Isolation of DNA from Animal Tissue

Please Read Important Notes Before Starting Following Steps.

Additional requirement: RNase A (optional), 96~100% ethanol.

Hint: Set dry or water baths: 60 °C for step 4 and 70 °C for step 6.

1. Cut up to 25 mg tissue sample to a microcentrifuge tube (not provided). Use provided Micropestle to grind the tissue sample. Or you can grind the tissue sample in liquid nitrogen with mortar and pestle then transfer the powder to a microcentrifuge tube.
2. Add 20 µl Proteinase K to the sample mixture. Mix thoroughly by vortexing.
3. Add 20 µl Proteinase K (10mg/ml) to the sample mixture. Mix thoroughly by vortexing. Incubate at 60 °C for 30 min. Vortex occasionally during incubation.
4. Centrifuge at full speed for an additional 3 min to dry the column.
5. If DNA is prepared from spleen tissue, no more than 10 mg should be used.
6. Add 200 µl FATG2 Buffer to the sample mixture. Mix thoroughly by pulse-vortexing and incubate at 70 °C for 10 min.
7. Add 200 µl ethanol (96~100%) to the sample mixture. Mix thoroughly by pulse-vortexing.
8. Briefly spin the tube to remove drops from the inside of the lid.
9. Place a FATG Mini Column in a Collection Tube. Transfer the mixture (including any precipitate) carefully to the FATG Mini Column. Centrifuge at full speed (~18,000 x g) for 1 min then place the FATG Mini Column to a new Collection Tube.
10. Add 400 µl W1 Buffer to the FATG Mini Column. Centrifuge at full speed for 1 min then discard flow-through.
11. Add 750 µl Wash Buffer to the FATG Mini Column. Centrifuge at full speed for 1 min then discard flow-through.
12. Centrifuge at full speed for an additional 3 min to dry the column.
13. Add 100 µl of preheated Elution Buffer or ddH2O (pH 7.5-9.0) to the membrane of the FATG Mini Column. Stand the FATG Mini Column for 3 min.
14. Centrifuge at full speed for 2 min to elute DNA.
15. If RNA-free genomic DNA is required, add 4 µl of 100 mg/ml RNase A (not provided). Mix thoroughly by vortexing and incubate at room temperature for 2 min.

--- Important Step! This step will remove the residual liquid.

--- Important Step! For effective elution, make sure that the elution solution is dispensed onto the membrane center and is absorbed completely.

--- If less sample to be used, reduce the elution volume to 50 µl to increase DNA concentration and do not elute the DNA using less than suggested volume (50 µl). It will lower the final yield.

Protocol: Isolation of DNA from Animal Cultured Cells

Please Read Important Notes Before Starting Following Steps.

Additional requirement: RNase A (optional), 96~100% ethanol, trypsin or cell scraper (for monolayer cell), PBS.

Hint: Set dry or water baths: 60 °C and 70 °C.

1. Harvest cells
 a. Cells grown in suspension
 i. Transfer the appropriate number of cell (up to 1 x 10^7) to a microcentrifuge tube.
 ii. Centrifuge at 300 x g for 5 min. Discard supernatant carefully.
 b. Cells grown in monolayer
 i. Detach cells from the dish or flask by trypsinization or using a cell scraper. Transfer the appropriate number of cell (up to 1 x 10^7) to a microcentrifuge tube.
 ii. Centrifuge at 300 x g for 5 min. Discard supernatant carefully.
2. Resuspend cell pellet in PBS to a final volume of 200 µl.
3. Follow the Animal Tissue Protocol starting from step 2.

Protocol: Isolation of Genomic DNA and Viral DNA from Blood

Please Read Important Notes Before Starting Following Steps.

Additional requirement: RNase A (optional), 96~100% ethanol, PBS.

Hint: Set dry or water baths: 60 °C for step 3 and 70 °C for step 4.

1. Transfer up to 200 µl sample (whole blood, serum, plasma, body fluids, buffy coat) to a microcentrifuge tube.
2. (Optional) If RNA-free genomic DNA is required, add 4 µl of 100 mg/ml RNase A (not provided). Mix thoroughly by vortexing and incubate at room temperature for 2 min.
3. Add 20 µl Proteinase K to the sample, and then add 200 µl FATG2 Buffer to the sample. Mix thoroughly by pulse-vortexing. Incubate at 60 °C for 30 min. Vortex occasionally during incubation.
4. Centrifuge at 70 °C for 10 min.
5. Follow the Animal Tissue Protocol starting from step 7.
Protocol: Isolation DNA from Yeast

Please Read Important Notes Before Starting Following Steps.

Additional equipment: • RNase A (optional), 96–100% ethanol,
• Zymolase or lyticase, 200 U for one preparation
• Sorbitol buffer (1M sorbitol; 100 mM EDTA; 14 mM ß-mercaptoethanol)

HINT: Set dry or water baths: one to 37 °C, another to 60 °C and the other to 95 °C.
1. Transfer 3 ml log-phase (OD600 = 10) yeast culture to a microcentrifuge tube (not provided).
2. Descend the cells by centrifuging at full speed for 2 min and discard supernatant completely.
3. Resuspend the cell pellet in 600 µl (1M sorbitol; 100 mM EDTA; 14 mM ß-mercaptoethanol). Incubate at 37 °C for 30-60 min.
4. (Optional) If RNA-free genomic DNA is required, add 4 µl of 100 mg/ml RNase A (not provided).
Mix thoroughly by vortexing and incubate at room temperature for 2 min.
5. Add 20 µl Proteinase K to the sample, and then add 200 µl FATG2 Buffer to the sample. Mix thoroughly by pulse-vortexing. Incubate at 60 °C for 30 min and vortex occasionally during incubation.
6. Do a further incubation at 95 °C, for 15 min.
7. Follow the Animal Tissue Protocol starting from step 2.

Protocol: Isolation DNA from Bacteria

Please Read Important Notes Before Starting Following Steps.

Additional equipment: • RNase A (optional), 96–100% ethanol,
• Sorbitol buffer (1M sorbitol; 100 mM EDTA; 14 mM ß-mercaptoethanol)

HINT: Set dry or water baths: one to 37 °C, another to 60 °C and the other to 95 °C.
1. Transfer 1 ml well-grown bacterial culture to a microcentrifuge tube (not provided).
2. Centrifuge at full speed for 5 min. Remove supernatant by pipetting.
3. Resuspend the cell pellet in 600 µl (1M sorbitol; 100 mM EDTA; 14 mM ß-mercaptoethanol). Incubate at 37 °C for 30-60 min.
4. (Optional) If RNA-free genomic DNA is required, add 4 µl of 100 mg/ml RNase A (not provided).
Mix thoroughly by vortexing and incubate at room temperature for 2 min.
5. Add 20 µl Proteinase K to the sample, and then add 200 µl FATG2 Buffer to the sample. Mix thoroughly by pulse-vortexing. Incubate at 60 °C for 30 min and vrotex occasionally during incubation.
6. Do a further incubation at 95 °C, for 15 min.
7. Follow the Animal Tissue Protocol starting from step 2.

Protocol: Isolation DNA from Dried Blood Spot

Please Read Important Notes Before Starting Following Steps.

Additional equipment: • RNase A (optional), 96–100% ethanol,
• Lysozyme reaction solution (20 mg/ml lysozyme; 20 mM Tris-HCl, pH 8.0; 2mM EDTA; 1:2.5 Triton)

HINT: Set dry or water baths: 60 °C for step 4 and 70 °C for step 6.
I. For bacterial cultures
1. Transfer 1 ml well-grown bacterial culture to a microcentrifuge tube (not provided).
2. Descend the cells by centrifuging at full speed for 2 min and discard supernatant completely.
3. Follow the Animal Tissue Protocol starting from step 2.
II. For bacterial in biological fluids
1. Collect cells by centrifuging biological fluids at 7,500 rpm (5,000 x g) for 10 min and discard supernatant completely.
2. Follow the Animal Tissue Protocol starting from step 2.
III. For bacteria from eye, nasal, pharyngeal, or other swabs
1. Soak the swabs in 2 ml PBS at room temperature for 2-3 hr.
2. Descend the cells by centrifuging at full speed for 2 min and discard supernatant completely.
3. Follow the Animal Tissue Protocol starting from step 2.
IV. For Gram-positive bacteria
HINT: Set dry or water baths: one to 37 °C, another to 60 °C and the other to 95 °C.
1. Transfer 1 ml well-grown bacterial culture to a microcentrifuge tube (not provided).
2. Descend the cells by centrifuging at full speed for 2 min and discard supernatant completely.
3. Resuspend the cell pellet in 200 µl lysozyme reaction solution (20 mg/ml lysozyme; 20 mM Tris-HCl, pH 8.0; 2mM EDTA; 1:2.5 Triton). Incubate at 37 °C for 30-60 min.
4. Add 1 ml ethanol (96- 100 %) to the deparaffined tissue, mix gently by vortexing.
5. Centrifuge at full speed for 5 min. Remove supernatant by pipetting.
6. Add 1 ml ethanol (96-100 %) to the deparaffined tissue, mix gently by vortexing.
7. Incubate at 37 °C for 10-15 min to evaporate ethanol residue completely.
8. Grind the tissue sample by micropriset or liquid nitrogen and follow the Animal Tissue Protocol starting from step 2.
I. For formalin-fixed tissues
1. Wash 25 mg tissue sample twice with 1 ml PBS to remove formalin.
2. Grind the tissue sample by micropriset or liquid nitrogen and follow the Animal Tissue Protocol starting from step 2.

Troubleshooting

Problem/ Possible reasons	Solutions
Low or no yield of genomic DNA	Increase the sample size or concentrate a larger sample volume to 20 µl.
To much amount of sample was used	Reduce the sample volume.
Poor cell lysis	Use a fresh or well-stored Proteinase K stock solution. Do not add Proteinase K into FATG2 Buffer directly.
Poor cell lysis because of insufficient Proteinase K activity	Mix the sample and FATG2 Buffer immediately and thoroughly by pulse vortexing.
Poor cell lysis because of insufficient mixing with FATG2 buffer	Mix the sample and FATG2 Buffer immediately and thoroughly by pulse vortexing.
Poor cell lysis because of insufficient incubation time	Extend incubation time and make sure that no residual particulate remain.
Insufficient binding of DNA to column’s membrane	Make sure that the correct volumes of ethanol (96-100 %) is added into the sample lysate before binding.
Ethanol and sample lysate did not mix well before DNA binding	Make sure that Ethanol and sample lysate have been mixed completely before DNA binding.
Incorrect preparation of Wash Buffer	Make sure that the correct volumes of ethanol (96-100 %) is added into Wash Buffer when first open.
Elution of genomic DNA is not efficient	Make sure the pH of ddH2O is between 7.5-9.0.
Make sure that the correct volumes of ethanol (96-100 %) is added into Wash Buffer when first open.	
Use Elution Buffer (provided) for elution.	
Elution Buffer or ddH2O is not added into sample lysate before DNA binding	After Elution Buffer or ddH2O is added, stand the FATG Column for 5 min before centrifugation.
Column is clogged	Lysate contains insoluble residues
Sample is too viscous	Reduce the sample volume.
Insufficient activity of Proteinase K	Use a fresh or well-stored Proteinase K stock solution and do not add Proteinase K into FATG2 Buffer directly.
Poor quality of genomic DNA	A260/A280 ratio of eluted DNA is low
Use a fresh or well-stored Proteinase K stock solution.	
Do not add Proteinase K into FATG2 Buffer directly.	
Use Elution Buffer (provided) for elution.	
Mix the sample and FATG2 Buffer immediately and thoroughly by pulse vortexing.	
Extend the incubation time and make sure that no residual particulates remain.	
A260/A280 ratio of eluted DNA is high	Follow the Animal Tissue Protocol step 5 to remove RNA.
FATG2 Buffer was added into sample lysate before added RNase A	Make sure that RNase A has been added to the sample lysate before adding FATG2 Buffer when using optional RNase A step.
Degradation of eluted DNA	Sample is old
Genomic DNA extracted from paraffin-embedded tissue is usually degraded. It is still suitable for PCR reaction, but is not recommended for Southern blotting and restriction analysis.	
Buffer for gel electrophoresis contaminated with DNase | Use fresh running buffer for gel electrophoresis.